
CONTENTS

Comprehensive Implementation Process
Mr. Mattie
15th April, 2025

Contents
1 A Comprehensive System ImplementationProcess 2

2 System Design - Modern Architecture 2
2.1 RUP (Rational Unified Process) . 2
2.2 Design . 3

2.2.1 USE CASE/DOMAIN modelling . 3
2.2.2 Roles . 3
2.2.3 Messages . 3
2.2.4 Entities . 3

2.3 Summary . 4

3 Implementation 4
3.1 Service Factoring . 4
3.2 Layers . 4

3.2.1 App Layer . 4
3.2.2 Domain Layer . 4
3.2.3 Technical Core . 4

4 Principles 4
4.1 Twelve Factor App . 5
4.2 Tests as Contracts . 5
4.3 Outsourcing . 5
4.4 submodules vs. packages . 6
4.5 Side-Effect Free . 6
4.6 Assertions . 6
4.7 Simplify Associations . 6
4.8 Factories . 6
4.9 Tests as contracts . 6

4.9.1 Structure . 6

5 My Readings 7
5.1 The 12 Factor App . 7
5.2 Semantic Versioning . 7
5.3 Git Flow . 7
5.4 Conventional Commits . 7
5.5 Introduction to Algorithms . 7
5.6 Applied Cryptography . 7
5.7 Design Patterns . 8
5.8 Domain-driven Design . 8
5.9 Logic in Computer Science . 8
5.10 Structure and Interpretation of Computer Programs . 8
5.11 The Art of Computer Programming . 8
5.12 The Structure of Scientific Revolutions . 8
5.13 Unix Power Tools . 8

15th April, 2025 1/10 Mr. Mattie

5.14 Hackers, Heroes of the Computer Revolution . 9
5.15 The Art of Unix Programming . 9
5.16 The Cuckoo’s Egg . 9
5.17 The Design and Evolution of C++ . 9
5.18 The Design of Every Day Things . 9
5.19 The Soul of a New Machine . 9

1 A Comprehensive System ImplementationProcess
Rapid development of effective software requires the knowledge and experience to design, implement,
deploy, and iterate a development process.

Along the way many projects ditch tooling and process for speed, thinking that this is the quickest way
from: A -> B. The result is a mock-up at best that has to be rewritten on the investor or customer
dime.

I prefer few, and lightweight tools, with a consistent development process that translates principles into
products. Effective, reliable, and fast.

Vision - “Building the Impossible”
System Design is a crucial aspect of building effective and flexible systems that can be modified and
enhanced without rewrites of monolithic codebases.

My major influence is the UNIX command line. Utilizing a standard data format, highly configurable
and narrowly scoped components are composed - making it possible to achieve astonishing power,
flexibility, and re-use.

Conversely, many poor designs revolve around slapping together a database that is shouldering a massive
monolithic app.

Despite monolithic apps being replaced by Micro-Service architecture, and Application Integration
architecture - huge monoliths are still stood up today. Especially for ”1.0” implementations.

2 System Design - Modern Architecture
”One bulls-eye is luck, three is skill”

Vision is a articulation of goals and a refinement of the application scope using business language. The
business case defines the scope, operations, and constraints of the solution.

Being able to build something that resembles the vision, and doing it over and over again requires a
process. A method for doing it right every time.

If developers fail to uncover major issues in the design process, if developers make structural mistakes
in implementation, if developers don’t have the tooling to reliably push into production - then you face
serious anomalies in the timeline.

2.1 RUP (Rational Unified Process)
Rational Unified Process is the high level view of the development process. This is a fully iterative
approach, which can work if the entities (which are deepest rooted dependencies) are encapsulated
inside services that pass well defined and simple messages.

This service architecture allows for rapid iteration within well-defined silos while maintaining the in-
tergrity of the overall system.

15th April, 2025 2/10 Mr. Mattie

2.2 Design

Changes in the services have a low impact. Changes in the message passing or service scope ripple
horizontally throughout the layers, and cause conflicts in the system and the developers.

Each of the services perform staged deliveries, allowing the overall system to be a staged delivery model.
This builds and exercises the entire delivery toolchain and the deploy process.

• Inception - make a initial evaluation to determine the cost and value of the project. It should
make a business case of the minimal viable delivery definition through essential use cases. Look
for competitors.

• Elaboration - perform domain modeling and architecting. Produce a integration test suite to
shake out the service factoring and the overall architecture. This is a iterative process.

• construction - complete the implementation of the services. This is a iterative process.

• Transition - Final release work not in the scope of continuous delivery.

Inception in domain langauge is where concepts are identified. If there is a troublesome area use domain
language to pinpoint, dissect, and and re-arcticulate the design stumbling blocks.

Designing is the practice of distilling a vision description down into the essential components and
features of a successful system. Design’s legacy is: eleganance, aesthetic, pragmatic, maintainable
software.

2.2 Design
“Weeks of Coding can save hours of Planning”

Simplicity of design is first principles. The insights into the domain produce a model of the problem
and a fully conceived solution.

A CASE/DOMAIN iteration process is learning and refinement in nature. It is not a scribbling of ideas,
but testing and stretching them to see if they fit the problem.

2.2.1 USE CASE/DOMAIN modelling

USE cases are designed as sequence diagrams showing the interaction between the user, the system,
and the problem. The user interacts with the system, and the system interacts with the problem - or
DOMAIN.

2.2.2 Roles

System Roles are built as state machines. Each state consists of a set of messages that can be sent from
that state. Each response from the system or operation performed by the user is a potential response
and/or transition to another state.

In planning roles each role is a board, each state is represented by a ticket, and the messages as
sub-tasks. Boards and tickets are for system planning, not time tracking and employee metrics.

2.2.3 Messages

Messages are transitive immutable entities, passed between components and users. They are in a Data
Catalog which is a documentation of all the messages in a layer.

2.2.4 Entities

Entities are persistent state with a cohesive, complete, and minimal set of attributes. They are refined
by the narrow and precise scoping of what the Entity is used for.

Entities never appear in the layer definitions as they are always encapsulated by services.

15th April, 2025 3/10 Mr. Mattie

2.3 Summary

2.3 Summary
The design process doesn’t have to be slow. If it is slow then it won’t be used. Looking at tools like
markdown, plantuml, and mindmapping tools, a design can rapidly evolve.

If it’s slow your tools are in the way, with too much formatting and styling, and rearranging. Design
docs can be primitve at first, and styled with fancy tools later for presentation.

3 Implementation
Implementation is not a straight to code path, it involves a second phase of iteration: enriching the
layers, services, and operations along cohesive encapsulation lines.

3.1 Service Factoring
“Systemic Seperation of Concerns”

Operations under the same “knows about” topic are gathered into a service that encapsulates the topic.
It produces and consumes messages that soley reference entities and operations within it’s scope.

In a sequence diagram of the messaging between the services each service has a column.

3.2 Layers
System layers are defined by a data catalog and relationships shared across the components and services.
If it comes from the same data catalog it’s in the same layer. Different catalog, different layer.

3.2.1 App Layer

The app layer is responsible for all the library, compotent, and service integrations, initialization, error
handling, and shutdown.

3.2.2 Domain Layer

The Domain Layer should be a structure encompassing and modelling the full scope of the problem.

The Domain layer is focused on representation, and it’s parts are concerned with traversing, structuring,
and partitioning the Problem Space.

The Domain layer should fit on everything from a laptop for development, to pyspark clusters for large
scale data processing.

The structure of the Domain Layer should represent the real world relationships between the pieces of
data.

A good example is the MacOS device model which has representations in a network graph for connec-
tivity and in planes such as power management. Querying the device model is by passing a dictionary
of attributes providing encapsulation.

3.2.3 Technical Core

The Technical Layer ties into both the Application Layer and the Domain Layer to provide the Business
Logic and Algorithmic capabilities of the system.

4 Principles
Principles are wisdom that when discarded produce a Pyrrhic victory

15th April, 2025 4/10 Mr. Mattie

4.1 Twelve Factor App

4.1 Twelve Factor App
• One Code Base in Version Control (This can be decomposed into multiple repostories with ad-

vanced tooling capabilities) independent of environments configurations, and dependencies.

• Explicit Dependencies and Dependency Isolation

• Code sharing between repositories is packages. All dependencies of each service are checked in as
git submodules. All code in the repository is built into the package for that repository.

submodule dependencies including executables are static linked down to the OS layer.

• Config Values in Environment Variables. Config values are propagated from the environment
bound launcher into environment variables consumed by the application processes.

• Backing Services: All resources are abstracted as config bound componets, local and remote.

• Code and Build, bind environment config and build for release.

• Stateless Processes. All processes contain no locally attached state, all state is written to resources
with ACID properties

• Port Binding - no web server or reverse proxy. The app binds to a bare port. No extra components
are needed to run it.

• Scale via Service Processes horizontally.

• Disposable Processes Make processes starting, stopping, and scaling fast. make them dispos-
able putting state in ACID resources. Death of processes should not impact the system in any
significant way.

• Dev/Prod Parity: Keep Dev and Prod in sync so that changes can be rapidly promoted to Prod
with confidence.

• Logs - Log to stdout: Log to stdout, use logging services to pick up the stream and make it
analyzable.

• Admin via one-off programs and REPL’s. Glue together dashboards out of logging services and
dashboards.

4.2 Tests as Contracts
Tests as contracts. Tests should reflect actual useful scenarios and not simply exercise coverage. Test
the expected behavior of the interfaces on one level, and the performance on another.

To make it organized, and even possible to auto-generate docs from the unit test code - make a test file
for each operation being tested. Enumerate the cases in the file.

Documentation should briefly describe what the behavior of the mode, and the circumstances and types
of the errors.

4.3 Outsourcing
Outsource anything outside of the Core Domain to libraries and services vastly accelerating development
and the creation of value. If the problem is in another domain it probably should be outsourced,
especially if it is in another technical domain.

Beware of dependency hell by choosing libraries and services with extremely mature API’s with minimal
sub-dependencies. Small libraries with narrow scope and functionality should be avoided.

15th April, 2025 5/10 Mr. Mattie

4.4 submodules vs. packages

4.4 submodules vs. packages
Pull the sources for outsourcing into the service repositories as git submodules. Build packages and
store in your own package repository so that the source, builds, and repeatable builds for the entire
system is preserved.

4.5 Side-Effect Free
Side Effect Free Functions: as many functions as possible should return a result, and have no other
effect upon subsequent calls, or alter the outcomes of other function.

This simplifies analysis, understanding, and eliminates vast numbers of difficult to solve.

4.6 Assertions
Assertions are Invariants that are like probes into the heart of the design and the code. Invariants
should be used primarily in tests. well stated is single invariants or as predicate transformers [23,
Predicate transformers] stating the pre and post conditions of the function.

4.7 Simplify Associations
Simplify Associations: Reduce connections and cardinality complexity of relationships with constraints
and layers found in the deeper understanding of the problem domain.

Use Stored Procedures or Object Relational Mappers to abstract Entities and Aggregates from the
storage structure. This also abstracts storage quirks from the Technical Core layer.

Stored Procedures enforce locking and return denormalized rows for compound objects.

4.8 Factories
Factories are for the construction of compound objects, objects with post-construction intialization, or
selecting between objects with different class lineage, but the same API.

4.9 Tests as contracts
One of the main reasons why documentation is such a problem is drift, no one notices when the
code changes, but the documentation doesn’t. Attempts to integrate the two have been ”Literate
Programmming” by Knuth [22, Literate Programming]

The tools however were not time efficient enough due to the emphasis on typesetting. More recently
markdown has emerged as a fast way of creating documents.

Now there is a even better way that has evolved in Emacs. It is called org-mode and it allows for code
blocks to be mixed with markdown like document syntax.

Not only does it rapidly generate documentation, the code blocks can even be executed inside the
org-mode document, or written to files.

This allows for a new paradigm where the tests and the API documentation are the same document.
The tests illustrate the API, verify the documentation, and ”tangled” into files a test suite is generated.

4.9.1 Structure

The test-suite/API documentation has the structure of a document with a preamble introducing the
API. Each operation in the API is a mixture of code and documentation.

15th April, 2025 6/10 Mr. Mattie

Each Operation generates a test-suite file. In each operation test file the CASE’s are enumerated
exhaustively, testing the code and validating the documentation.

The result is a test-suite, and API documentation in sync.

5 My Readings
Here is list of my most influential sources, with a short description of what they are, or the influence
they had on me.

5.1 The 12 Factor App
The 12 Factor app [6, 12 Factor] is a seminal document on Architecture and implementation of horizontal
scaling Micro-Service Systems. It’s lessons are from the blood, sweat, and tears of years - if not decades
- of writing scalable and maintainable systems.

5.2 Semantic Versioning
Semantic Versioning [21, Semantic Versioning] is the state-of-the art in release practices for version
formatting and the semantics of the version scheme.

It’s commentary on release practices is priceless.

5.3 Git Flow
Git is powerful, but does not impose a Workflow. This has lead to a lot of chaos, but has also allowed
for a lot of research into the best Workflows for version control.

Git-Flow [2, Git Flow workflow] Is the best of the Workflows and is tooled as ”git-flow” on most systems.
The combination of a well thought out, experience driven, powerful paradigm is a huge asset to any
project.

5.4 Conventional Commits
Most commit messages arise from a anarchy of practices leading to git logs that are difficult to under-
stand and impossible to automate with tools.

Convential Commits [3, Conventional Commits] provide a standard for different types of commits and
what the types mean. With git flow you can understand the logs easily and also you can use tools to
process the logs.

5.5 Introduction to Algorithms
MIT Introduction to Algorithms [4, Introduction to Alogrithms] is the definitive work on the most com-
mon algorithms. It is the ten-ton-hammer of algorithms with precise detail and thorough presentation
of every algorithm. This belongs on every programmer’s shelf.

5.6 Applied Cryptography
Applied Cryptography [18, Applied Cryptography] is the seminal text on cryptography theory, algo-
rithms, and application.

The principles are explained in a precise and lucid manner. Not a daily-driver for most programmers,
but as a reference on cryptography it has no peers.

15th April, 2025 7/10 Mr. Mattie

5.7 Design Patterns

5.7 Design Patterns
Design Patterns [7, Design Patterns] are definitely one of the most influental books on programming
ever written. It introduces abstract definitions of powerful code mechanisms in a high level description
This should be read cover-to-cover many times.

5.8 Domain-driven Design
Domain-driven Design [5, Domain Driven Design] is a foundation of design principles for system design
and process. It is a cover-to-cover read.

5.9 Logic in Computer Science
Logic in Computer Science [8, Logic in Computer Science] deals with the modeling and reasoning about
computer code and systems. This is a powerful book but very dense with predicate logic.

5.10 Structure and Interpretation of Computer Programs
The original MIT intro to CompSci book [1, SICP] ss my bible. It’s thorough presentation of program-
ming fundamentals in the scheme language makes it a pleasant read.

It is a tour-de-force of fundamentals, and a fascinating treament of both functional and procedural
programming.

5.11 The Art of Computer Programming
Quite possibly the most famous series in programming. Written by Donald Knuth, typeset in Tex - a
system created to typeset the book correctly, It is possibly the most correct text on programming.

Knuth famously wrote checks to anyone who could find a mistake in the books. The checks were rarely
cashed, they were one of the most prized awards in programming culture. The series is four volumes
currently

• Vol 1: Fundamental Algorithms [12, AOCP v1]

• Vol 2: Seminumerical Algorithms [11, AOCP v2]

• Vol 3: Sorting and Searching [12, AOCO v3]

• Vol 4: Combinitorial Algorithms [10, AOCP c4]

5.12 The Structure of Scientific Revolutions
This classic text [13, Khun Paradigm Shifts] by Kuhn seperates revolutionary ideas from incremental
progress. It defines revolutionary changes as paradim shifts to new models. This classic pinpoints the
tidal shifts in scientific thinking.

5.13 Unix Power Tools
One of the most influential of my books Unix Power Tools [16, Power Tools] . It teaches the command
line by examples with as a teaching mechanism.

If you learn by example, and want to deep dive into the command line this is the best book.

15th April, 2025 8/10 Mr. Mattie

5.14 Hackers, Heroes of the Computer Revolution

5.14 Hackers, Heroes of the Computer Revolution
Steven Levy’s [14, Hackers Heros]] ”Hackers” is an amazing presentation of the early MIT years of
computer programming, personal computers, and early video game programming.

An easy read, and a good one.

5.15 The Art of Unix Programming
The Art of Unix Programming [17, Art of Unix] is a very influential book on designing systems the
UNIX way and how to decompose complex behavior into simple parts.

5.16 The Cuckoo’s Egg
The Cuckoo’s egg [19, Cuckoo’s egg] was my first introduction into the world of programming and
UNIX. It inspired me to become a programmer.

5.17 The Design and Evolution of C++
A lesser known work by Bjarne Stroustrup [20, Design and Evolution], in this book he discusses the
context and the decisions that drove the creation and evolution of C++. A must read for insight into
the creative and design process behind software.

5.18 The Design of Every Day Things
The Design of Every Day Things [15, Everyday Things] spawned modern inteface design, and the rise
of the product designer. A must read for programmers to create intuitive software.

5.19 The Soul of a New Machine
The Soul of a New Machine [9, Soul of a New Machine] is a great real world example how a small
nimble team using a simple clear vision and design can build a revolutionary product in a very short
amount of time.

References
[1] H. Abelson, G.J. Sussman, and J. Sussman. Structure and Interpretation of Computer Pro-

grams, second edition. MIT Electrical Engineering and Computer Science. MIT Press, 1996. isbn:
9780262510875. url: https://books.google.com/books?id=iL34DwAAQBAJ.

[2] Atlassian. Git Flow. 2024. url: https://www.atlassian.com/git/tutorials/comparing-
workflows/gitflow-workflow (visited on 03/13/2024).

[3] Conventional Commits. Conventional Commits. 2024. url: https://www.conventionalcommits.
org/en/v1.0.0/ (visited on 03/17/2024).

[4] T.H. Cormen et al. Introduction to Algorithms, fourth edition. MIT Press, 2022. isbn: 9780262367509.
url: https://books.google.com/books?id=RSMuEAAAQBAJ.

[5] E. Evans. Domain-driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley,
2004. isbn: 9780321125217. url: https://books.google.com/books?id=xColAAPGubgC.

[6] 12 Factor. The 12 Factor App. 2024. url: https://12factor.net/.
[7] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Professional Computing Series. Pearson Education, 1994. isbn: 9780321700698. url:
https://books.google.com/books?id=6oHuKQe3TjQC.

[8] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, 2004. isbn: 9781139453059. url: https://books.google.com/
books?id=eUggAwAAQBAJ.

15th April, 2025 9/10 Mr. Mattie

https://books.google.com/books?id=iL34DwAAQBAJ
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/
https://books.google.com/books?id=RSMuEAAAQBAJ
https://books.google.com/books?id=xColAAPGubgC
https://12factor.net/
https://books.google.com/books?id=6oHuKQe3TjQC
https://books.google.com/books?id=eUggAwAAQBAJ
https://books.google.com/books?id=eUggAwAAQBAJ

REFERENCES

[9] T. Kidder. The Soul of a New Machine. Modern Library Series. Modern Library, 1997. isbn:
9780679602613. url: https://books.google.com/books?id=oUpGAQAAIAAJ.

[10] D.E. Knuth. The Art of Computer Programming: Combinatorial Algorithms. Pearson Education,
2022. isbn: 9780137926817. url: https://books.google.com/books?id=6tnPEAAAQBAJ.

[11] D.E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, Volume 2. Pearson
Education, 2014. isbn: 9780321635761. url: https://books.google.com/books?id=Zu-
HAwAAQBAJ.

[12] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, Volume 3. Pearson Edu-
cation, 1998. isbn: 9780321635785. url: https://books.google.com/books?id=cYULBAAAQBAJ.

[13] T.S. Kuhn and I. Hacking. The Structure of Scientific Revolutions. University of Chicago Press,
2012. isbn: 9780226458144. url: https://books.google.com/books?id=3eP5Y_OOuzwC.

[14] S. Levy. Hackers: Heroes of the Computer Revolution - 25th Anniversary Edition. O’Reilly Media,
2010. isbn: 9781449393809. url: https://books.google.com/books?id=JwKHDwAAQBAJ.

[15] D. Norman. The Design of Everyday Things: Revised and Expanded Edition. Basic Books, 2013.
isbn: 9780465050659. url: https://books.google.com/books?id=qBfRDQAAQBAJ.

[16] S. Powers. Unix Power Tools. Nutshell handbook. O’Reilly Media, 2003. isbn: 9780596003302.
url: https://books.google.com/books?id=Xk6THylQxRUC.

[17] E.S. Raymond. The Art of UNIX Programming. Addison-Wesley Professional Computing Series.
Pearson Education, 2003. isbn: 9780132465885. url: https://books.google.com/books?id=
H4q1t-jAcBIC.

[18] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C. Wiley, 2017.
isbn: 9781119439028. url: https://books.google.com/books?id=Ok0nDwAAQBAJ.

[19] C. Stoll. The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer Espionage. Turtleback,
2000. isbn: 9781417642625. url: https://books.google.com/books?id=KxlrPwAACAAJ.

[20] B. Stroustrup. The Design and Evolution of C++. Pearson Education, 1994. isbn: 9780135229477.
url: https://books.google.com/books?id=hS9mDwAAQBAJ.

[21] Semantic Versioning. Semantic Versioning. 2024. url: https://semver.org/.
[22] Wikipedia. Literate Programming. 2024. url: https://en.wikipedia.org/wiki/Literate_

programming.
[23] Wikipedia. Predicate Transformer Semantics. 2024. url: https://en.wikipedia.org/wiki/

Predicate_transformer_semantics.

15th April, 2025 10/10 Mr. Mattie

https://books.google.com/books?id=oUpGAQAAIAAJ
https://books.google.com/books?id=6tnPEAAAQBAJ
https://books.google.com/books?id=Zu-HAwAAQBAJ
https://books.google.com/books?id=Zu-HAwAAQBAJ
https://books.google.com/books?id=cYULBAAAQBAJ
https://books.google.com/books?id=3eP5Y_OOuzwC
https://books.google.com/books?id=JwKHDwAAQBAJ
https://books.google.com/books?id=qBfRDQAAQBAJ
https://books.google.com/books?id=Xk6THylQxRUC
https://books.google.com/books?id=H4q1t-jAcBIC
https://books.google.com/books?id=H4q1t-jAcBIC
https://books.google.com/books?id=Ok0nDwAAQBAJ
https://books.google.com/books?id=KxlrPwAACAAJ
https://books.google.com/books?id=hS9mDwAAQBAJ
https://semver.org/
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Predicate_transformer_semantics
https://en.wikipedia.org/wiki/Predicate_transformer_semantics

	A Comprehensive System ImplementationProcess
	System Design - Modern Architecture
	RUP (Rational Unified Process)
	Design
	USE CASE/DOMAIN modelling
	Roles
	Messages
	Entities

	Summary

	Implementation
	Service Factoring
	Layers
	App Layer
	Domain Layer
	Technical Core

	Principles
	Twelve Factor App
	Tests as Contracts
	Outsourcing
	submodules vs. packages
	Side-Effect Free
	Assertions
	Simplify Associations
	Factories
	Tests as contracts
	Structure

	My Readings
	The 12 Factor App
	Semantic Versioning
	Git Flow
	Conventional Commits
	Introduction to Algorithms
	Applied Cryptography
	Design Patterns
	Domain-driven Design
	Logic in Computer Science
	Structure and Interpretation of Computer Programs
	The Art of Computer Programming
	The Structure of Scientific Revolutions
	Unix Power Tools
	Hackers, Heroes of the Computer Revolution
	The Art of Unix Programming
	The Cuckoo's Egg
	The Design and Evolution of C++
	The Design of Every Day Things
	The Soul of a New Machine

